
Engineering of Software Subsystems SWEN-262

Observer Pattern "Mini Design"

Rationale

The Invaders From SpaceTM requirements describe several features that require the application
to respond to user input, including that "[t]he player uses left and right arrow keys to move their
spaceship in the corresponding direction," and "the spacebar [is used] to fire a single shot." The
requirements also state that "if at any time the player presses the 'ESC' key, the game pauses
and they are prompted to quit. Pressing the 'y' key will quit the game. Pressing the 'ESC' key
again will unpause" and that "the game should be as responsive as possible." The intent of the
Observer pattern is to establish a dependency between a subject and its observer such that,
when the state of the subject changes, the observer is updated automatically. The
aforementioned features describe changes in state, i.e. keys being pressed by the user, and the
actions that need to be taken in response, i.e. moving the ship, firing shots, or pausing/quitting
the game. The observer pattern is an ideal match for this requirement.

The observer pattern includes several positive impacts on the overall design of the system. By
defining interfaces for the Subject (Component) and Observer (KeyListener), the pattern inserts
a layer of abstraction between the Real Subject (PlayArea) and its Concrete Observer(s)
(PlayerActionHandler), thus exemplifying the dependency inversion principle. This separation is
enabled by the dependency injection principle; the concrete observers are registered with the
concrete subject by "injecting" them using the register method. The observer pattern also
maintains high cohesion - each participant in the pattern has a specific, non-overlapping
responsibility. If any additional key events need to be handled in future versions of the game,
additional concrete observers may be added to the subsystem by implementing the KeyListener
interface without altering the existing classes or interfaces, thus adhering to the open/closed
principle.

One trade-off is that this implementation of the pattern comprises 4 small classes and
interfaces, thus increasing the overall coupling in the system. However, this tradeoff is
acceptable given the many strengths of the design. Separation of concerns could be improved
in the current design; a single class handles the 4 different possible key events (move, shoot,
quit), and it may be better to separate these into different classes. The team decided to keep the
functionality together because the code to handle each separate event is very small, but this
decision may be revisited in the future.



UML Class Diagram



GoF Pattern Card

Subsystem Name: Player Action Subsystem GoF Pattern: Observer

Participants

Class Pattern Stereotype Participant's contribution in the context of the
application

Component Subject Defines the interface for any class that can be
observed for key presses. This is most likely
to be a GUI component of some kind, like a
panel.

PlayArea ConcreteSubject The GUI component that displays the play
area including space ship, aliens, etc. This
component will have focus during play, and
so will generate an event at any time that the
user presses a key while the game is running.

KeyListener Observer The interface for any class that should be
notified when the user presses a key on an
observed subject. There may be several such
listeners in the game.

PlayerActionHandler ConcreteObserver Interprets key presses from the player into
actions in the game, i.e. left arrow moves the
space ship left, right arrow moves right, and
so on.

Deviations from the standard pattern: None

Requirements being covered: 1a. Ship movement, 1b. Firing weapons, 1c. Pause/quit, 2.
Responsive to player input.



Sequence Diagram

UML Sequence Diagram showing the "Quit Game" feature described in the requirements.


